Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAMA Netw Open ; 5(8): e2227109, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35972739

RESUMO

Importance: Clinical text reports from head computed tomography (CT) represent rich, incompletely utilized information regarding acute brain injuries and neurologic outcomes. CT reports are unstructured; thus, extracting information at scale requires automated natural language processing (NLP). However, designing new NLP algorithms for each individual injury category is an unwieldy proposition. An NLP tool that summarizes all injuries in head CT reports would facilitate exploration of large data sets for clinical significance of neuroradiological findings. Objective: To automatically extract acute brain pathological data and their features from head CT reports. Design, Setting, and Participants: This diagnostic study developed a 2-part named entity recognition (NER) NLP model to extract and summarize data on acute brain injuries from head CT reports. The model, termed BrainNERD, extracts and summarizes detailed brain injury information for research applications. Model development included building and comparing 2 NER models using a custom dictionary of terms, including lesion type, location, size, and age, then designing a rule-based decoder using NER outputs to evaluate for the presence or absence of injury subtypes. BrainNERD was evaluated against independent test data sets of manually classified reports, including 2 external validation sets. The model was trained on head CT reports from 1152 patients generated by neuroradiologists at the Yale Acute Brain Injury Biorepository. External validation was conducted using reports from 2 outside institutions. Analyses were conducted from May 2020 to December 2021. Main Outcomes and Measures: Performance of the BrainNERD model was evaluated using precision, recall, and F1 scores based on manually labeled independent test data sets. Results: A total of 1152 patients (mean [SD] age, 67.6 [16.1] years; 586 [52%] men), were included in the training set. NER training using transformer architecture and bidirectional encoder representations from transformers was significantly faster than spaCy. For all metrics, the 10-fold cross-validation performance was 93% to 99%. The final test performance metrics for the NER test data set were 98.82% (95% CI, 98.37%-98.93%) for precision, 98.81% (95% CI, 98.46%-99.06%) for recall, and 98.81% (95% CI, 98.40%-98.94%) for the F score. The expert review comparison metrics were 99.06% (95% CI, 97.89%-99.13%) for precision, 98.10% (95% CI, 97.93%-98.77%) for recall, and 98.57% (95% CI, 97.78%-99.10%) for the F score. The decoder test set metrics were 96.06% (95% CI, 95.01%-97.16%) for precision, 96.42% (95% CI, 94.50%-97.87%) for recall, and 96.18% (95% CI, 95.151%-97.16%) for the F score. Performance in external institution report validation including 1053 head CR reports was greater than 96%. Conclusions and Relevance: These findings suggest that the BrainNERD model accurately extracted acute brain injury terms and their properties from head CT text reports. This freely available new tool could advance clinical research by integrating information in easily gathered head CT reports to expand knowledge of acute brain injury radiographic phenotypes.


Assuntos
Lesões Encefálicas , Processamento de Linguagem Natural , Algoritmos , Humanos , Relatório de Pesquisa , Tomografia Computadorizada por Raios X
2.
Curr Neurol Neurosci Rep ; 20(9): 42, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32715371

RESUMO

PURPOSE OF REVIEW: Acute brain injury (ABI) is a broad category of pathologies, including traumatic brain injury, and is commonly complicated by seizures. Electroencephalogram (EEG) studies are used to detect seizures or other epileptiform patterns. This review seeks to clarify EEG findings relevant to ABI, explore practical barriers limiting EEG implementation, discuss strategies to leverage EEG monitoring in various clinical settings, and suggest an approach to utilize EEG for triage. RECENT FINDINGS: Current literature suggests there is an increased morbidity and mortality risk associated with seizures or patterns on the ictal-interictal continuum (IIC) due to ABI. Further, increased use of EEG is associated with better clinical outcomes. However, there are many logistical barriers to successful EEG implementation that prohibit its ubiquitous use. Solutions to these limitations include the use of rapid EEG systems, non-expert EEG analysis, machine learning algorithms, and the incorporation of EEG data into prognostic models.


Assuntos
Lesões Encefálicas , Convulsões , Eletroencefalografia , Humanos , Prognóstico , Convulsões/diagnóstico , Convulsões/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...